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Influence of irradiation on the space-time structure of shock waves
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The long-range energy deposition by heavy-ion beams makes new shock wave experiments possible in the
laboratory. We have investigated a situation that is of relevance to supernova dynamics in astrophysics, where
a shock wave is irradiated by a flux of neutrinos depositing energy throughout the shock wave and surrounding
matter, thus changing the behavior of the running shock. We have carried out fluid-dynamical simulations to
study generic features of stimulated shock waves. First we consider an idealized case assuming uniform energy
deposition into a planar shock wave propagating through an ideal gas. Then we investigate more realistic
situations realizable in laboratory experiments with heavy-ion beams. We have found that energy deposition
leads to two important effects: acceleration of the shock front and decay of the shock strength. The possibility
of laboratory experiments is briefly discussed.
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[. INTRODUCTION a cylindrical target and then, when it has developed suffi-
ciently, the target is irradiated by a second beam. The target
Supernova explosions represent one of the most spectaclength is chosen in such a way that the shock generated at the
lar phenomena in our Universe. In recent years much efforinitial stage is completely within the deposition region of the
has been devoted to developing realistic theoretical modefgecond bearfb]. In our simulations we assume that both are
of this complex processee the recent revief]). The main  heavy-ion beams with equal properties and are directed
mechanism includes the shock wave generation upon thelong the target axis from opposite directions. General prop-
bounce of the infalling iron core of a massive star, but de-erties of hydrodynamical flow in such targets have been stud-
tailed calculations showed that the prompt bounce shocked earlier in Ref.[6]. Another interesting phenomenon is
mechanism does not lead directly to ejection of the stellapredicted for the case of a single beam irradiation with con-
enve|ope_ Due to severe energy losses due to, e.g., photodgant temporal profile. It is shown that with increasing irra-
integration of iron nuclei, the outward shock wave stops in-diation time, when radial flow of matter behind the shock
side the iron core. Recently several new mechanisms of th&ont becomes noticeable, the shock wave in its central parts
shock revival have been suggesfécB] that include neutrino  decays as compared to initial stages. The origin of this phe-
heating and convection in the postshock matter. These prdiomenon consists in the increased range of the bombarding
cesses raise the postshock pressure and provide additioriz@rticles at later stages of target irradiation.
energy for the shock wave expansion. The calculations per- The paper is organized as follows. In Sec. Il a simple
formed by various groups differ, however, in Conc|usionsﬂUid-dynamica| model is formulated for the case of homoge-
concerning the possibility of successful shocks. In this rathef€ous energy deposition. Then in Sec. 1l this model is used
unclear situation a better understanding of the stimulated® study the dynamics of a planar shock wave in matter with
shock dynamics is highly desirabld]. Fortunately, intense an ideal gas equation of state. The asymptotic regime of the
heavy-ion beams open a new possibility to study such promatter flow is considered by a semi-analytic method outlined
cesses in laboratory experiments. in the Appendix. The results of more realistic calculations
In the first part of this paper we formulate a simple modeland suggestions for future experiments with heavy-ion
to study the evolution of a planar shock wave under influ-beams are given in Sec. IV. The main results of the present
ence of homogeneous irradiation. We have performed dePaper are summarized in Sec. V.
tailed fluid-dynamical calculations for the ideal gas equation
of state. The matter flow behind the shock front is rather [l. EQUATIONS OF FLUID DYNAMICS
complicated, resembling a decay of an initial discontinuity

[4]. The calculations show that under irradiation the shock Let us consider a beam .Of energetic particles irradiating a
front accelerates, but the density jump at this front dimin-t2rget with the mass densify. Often we shall speak about

ishes. It is remarkable that a self-similar regime of hydrody—phmon irradiati_on, but Fhe same approach can be applied for
namic flow is established at large irradiation time. other penetrating particles, e.g., for neutrino beams. The

In the second part of the paper we generalize our model t8trength Of. |rrad|at|o_n IS charact_erlzed by the energy depos-
consider more realistic situations that may be easily repro'—ted per unit space-time volume in the local rest frame of the

duced in laboratory conditions. Namely, we consider the castfrget,
when the initial shock wave is created by a beam with finite d
extension in the transverse directions. Specifically, we study E —
the scenario in which the first beam creates a shock wave in dt or
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where\ is the specific deposition rate. Let the target consist V(d;+vd )P+ yP(di+vd)V=(y—1)\. (12)
of atoms of different specidswith particle number densities
n;. In the case of monochromatic photons with the energy It is convenient to introduce instead BfV,v new dimen-

flux I (») one has sionless quantitie®=P/P,, V=p,V, v=v/v, where P,
andp, are initial pressure and density, and
Ap=1(0)>, n{oc®{w)), )
P E' I< I > Vo= \ POIPO' (12)

wherefi w is the photon energyo®9 is the cross section of et us make the transition fromx to dimensionless vari-
photon absorption on atoms of théh kind. The angular  gplest=t/t, andx=x/x,, where

brackets denote averaging over their momentum distribution.

In this paper we neglect internal heat transport processes and to=v3/\, Xo=voto. (13
assume\ to be constant in time and space. The last assump-

tion implies that the external radiation is homogeneous, DopNow Egs.(9)—(11) may be rewritten in the same form, but
pler effects are not important, and the photon absorption i, the replacement@,v,v,t,XHE,V,mand)\Hl. If

bsy—1 i

length, Eini(o™)) ", is large as compared to the charac-he injtial conditions do not impose additional scales, there is

teristic size of a target. . no need to solve fluid-dynamical equations for different
Below it is assumed that energy deposition proceeds Ungeposition rates. It is sufficient to find the solution only for

der condition of local thermodynamic equilibrium, in par- gne fixed value of, then the above scaling can be used to

ticular, we neglect effects of internal heat transport and Visytajn the solution for other values. For example, this scaling

cosity. The dynamics of target flow is described by thecan pe applied for the shock wave initial conditidsse the

equations of ideal hydrodynamics in nonrelativistic approxi-next sectiop

mation. Let us consider first a one-dimensional case when e close the general discussion by defining three families

matter moves along theaxis with the velocityy=v,. The  f characteristicg. ,xc ,Xc.. They are solutions of the fol-
equations of motion then take the form lowing differential équzﬁiong

X =01 3 .
G+ axpv) ® x(=v+c, (C,), (14)
di(pv)+ dx(P+pv?) =0, (4) .
x(t)=v—cs (C_), (15)
d(e+ pv?2)+ d,[v(e+ P+ pv2/2)]=N\p. (5)
x()=v (Co), (16)

HereP is pressure and is the energy density. By using Egs.
(3) and(4) and thermodynamic relations one may rewrite Eq.

(5) in the equivalent form wherev and cg are taken atk=x(t). As well known [4],

these characteristics describe propagation of small distur-
T(0+0d,)S=\, (6) bances of fluid-dynamical quantities. In particular, the en-
tropy disturbances propagate along tfig characteristics
whereT is temperature and,, is the specific entropy. This (the latter are also the collective flow trajectoyies
equation shows that is, in fact, the specific rate of heat  In the following we assume that irradiation starts &t0
deposition into the target matter. and the initial profilesp(x,0), v(x,0) andP(x,0) are known
In the fo||owing we assume that the target matter can béunction of x. Let us consider first the case of homogeneous
regarded as an ideal Boltzmann gas with one species of molitial - conditions, when p(x,0)=po, v(x,0)=v,, and
ecules and a constant ratio of heat capaciieC,/C,. The ~ P(x,0)=Po. In this case the solution of Eq$9)—(11) is
equation of state of such matter has a very simple form  trivial

P=(y—1)e=pRT/M, (7 V(x,t)=1/po, (17)
whereR is the gas constant arid is the molar mass. The v(X,t)=vg, (18
specific entropy in this case is
P
Sm:(y_l)M Inp—y+const. ® In the same case the adiabatic sound velocity is equal to
Using Eq. (7) and introducing the specific volume Cs=VyPV=1/ci+ y(y— DAL, (20

=1/p one can rewrite Eq$3)—(5) as follows
wherecy= \yPo/pg is the initial sound velocity.

(di+va)V=Vi,v, 9 For homogeneous initial conditions, substituting E3s)
and (20) into Egs. (14)—(16), one can find characteristics
(di+vd)v=—Vi,P, (10 analytically

066305-2



INFLUENCE OF IRRADIATION ON THE SPACE-TIME . .. PHYSICAL REVIEW E 64 066305

25 T T T T T T
Xc_ () =Vt = =————[c2+ y(y—1)At]¥?+ const,
Cs T 3y(y—ro Y L =4, y=5/3
(21)
20 =
xco(t) =Vt + const. (22
According to Eq(21), at large irradiation times th€.. char- < sk i
acteristics approach asymptotically the same lines thatdo not §
depend on initial conditions
Xe (=% &N (1>CBIN VAN, (23 1.0 -
where
2 05 1 1 2 1 " 1 .
-200 -100 0 100 200
fo=zVr(y—1). (24) %/%
FIG. 1. Density profiles for different times of shock wave irra-
I1l. ONE-DIMENSIONAL SHOCK WAVES diation. The initial pressure ratip=4. Scalesc, andt, are given

by Eqgs.(12) and(13). The dotted curve shows densities on @
characteristic withk(0)=0.

Let us consider a one-dimensional shock wave propagat-
ing to the left qlgng th9< axis (directed to the rigljtand where® (x)=31(1+sgnx), andy;, andy,, denote the fluid-
denote the position of its front bygy(t). For brevity we  dynamical quantities in front and behind of the initial shock
introduce the vectoy=(V,v,P) that combines the set of front, respectively. We choose these quantities by fixing the
fluid-dynamic quantities in a compact way. It is assumed thatlensity (po=p,,=1/V1o) and pressureR,=P;y) atx<0 as
at x=Xg, this vector jumps fromy,;=y(xs,—0t) t0 ¥,  well as the pressurePpg) atx>0.

A. Numerical results

=y(Xsy+0t). In the rest frame of the shock waymoving Using the relationg25) one has

with the velocity D=|x| with respect to the laboratory

frame the fluxes of mass, energy, and momentum should be (y=x+y+1

continuous ak=X,. This gives three relationg] connect- V20_(7+ Dx+vy— 1V10' (27)

ing D and the components of vectoys,. In the case of an

ideal gas one obtaing] ¥ e
10 -

= —=D(0)= \/——1 28

vl+D_vz+D_ PZ_P1_ (P, +P,) V10 UZOVZO (0)=vg > (29

V, V, \/Vl—Vz \/ Vi+V, '’ (25
where y = P,o/P4q is the initial pressure ratiq;q is defined

wherev , are defined in the laboratory frame. Therefore, atby Ed.(12), and the velocitie®, (i=1,2) are taken in the
givenys, all characteristics of the shock wave can be deterrest frame of the shock front.
mined if one of the quantitie®,P,,V,,v, is known. One Most calculations have been performed fpr5/3 and
should bear in mind that the relatiof5) are based only on x=4. In this case the initial density jumps at the shock front
the local conservation laws and hold also for shock wave§om po to 2.1250, and the flow velocity jumps from
with energy deposition. However, as will be shown below, in=2.380v t0 v,=1.120v,. Some results of numerical cal-
this situation the characteristics of the shock wéwepar-  culations for these initial conditions are shown in Figs. 1-4.
ticular, D) are in general time dependent. The results are presented using the scaled varialigand

It is further assumed that a steplike one-dimensionak/Xq, With tg,X, defined in Eq.(13). As explained in the
shock wave was created in a targett0. If pressure and preceding section, in such a representation the whotke-
density before and behind the shock front do not change witfpendence is contained only in the scalggndx,.
x andt, the shock velocityD will be constant. Below we Figure 1 shows the density profiles at different times from
study the dynamics of this “initial” shock wave after switch- the beginning of irradiation. One can see that irradiation de-
ing on the energy deposition & 0. Equationg9)—(11) are  forms the shape of the initial shock wavetat0. The region
solved numerically by using the flux corrected transportof the perturbed flow is wider at later times. With increasing
(FCT) algorithm[8]. The calculations are performed in the t the shock wave becomes weakére density jump at the
rest frame of the initial shock. Choosing the origin of the left hand side diminishgs However, the absolute value of
axis at the position of the shock front, one hagt)=0 at  the shock front velocity becomes larger as compared to the

t<0. To be more specific, the following initial conditions are initial value D(0).
applied The acceleration of the shock front is clearly visible in

Fig. 1. Indeed, the shift of the shock front position from the
Y(X,0) =Y100 (—X) + Y00 (X), (26) point x=0 increases nonlinearly with The reason for ac-
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FIG. 2. The same as in Fig. 1, but for pressure profiles. FIG. 4. The same as in Fig. 1, but for flow velocity profiles.

celeration is rather simple: as follows from E@O) and at the shock frontP,—P;, becomes larger at later stages of
Fig. 3 the sound velocitg, behind the shock front increases irradiation. We have checked that the density and pressure
with t due to the heat deposition. jumps atx=xg, satisfy the Hugoniot adiabate given by Eq.
At given t the density profile has three characteristic(25). In accordance with Eq19), pressure increases linearly
points: (1) the shock wave discontinuity at=x(t), (2) the  with t at x— *o. At known p andP the sound velocityc,
intermediate kink where the derivativgp jumps, and(3)  can be calculated by using the first equality in E20). In
the boundary of the perturbed region on the right-hand sidethe case of the ideal gas is proportional toyT. The results
The position of the third point can be found analytically. It is of the calculation are shown in Fig. 3. It is seen that the jump
in fact the characteristitxc+(t) with the initial condition in cg, and therefore also iff, practically does not increase

Xc,(0)=0. The calculation confirms that this point moves in With t. At large t the asymptotic values of, at x— %
accordance with Eq.21) where \=v,, and Co=Cyp become nearly equal. This agrees with E20). Indeed, at

s 2 . .
= yPyVao It can be shown that the second point Corre-t>C20/)\ one obtains the relations
sponds to the characterisb’rf(:;o(t) with xco(0)=0. The di-

rect numerical integration of E416) gives the result shown lim c.= §§ It (29)
by the dotted curve in Fig. 1. One can see that onxhe r o2 ovEh
plane theC, characteristic indeed goes through the kink po-
sitions following from Eqgs(9)—(11). . .
Profiles of pressure calculated for the same initial condi-\'\’heregO is defined by Eq(24).

. S . Figure 4 shows the results for the flow velocity profiles.
tions are shown in Fig. 2. One can see that the pressure Jungqlm”%r to density, values of do not change with thr))(_}

+o. However, the flow velocities in the perturbed region
diminish as compared to initial values. As will be shown in
x=4,v=5/3 1 the next section these velocities become negative at late
stages of irradiation. Numerical values of the velocity jump

6 -4’_\_/—- agree with conditions given in Eq25) (see Ref.[7]). At

8 —

."\\ larget this jump increases approximately proportiona
3: 41 r\y - B. Self-similarity of flow at large irradiation time
¢ " _ The_resqlts presentgd in Se(;. A suggest thqt_at large
0 o ; irradiation time, the fluid dynamical quantities exhibit some
ol —- 10.00 _ properties of self-similarity. At> cgol)\ characteristic values
“““ 20.00 of pressure and sound velocity increase, respectively, propor-
— 30.01 . :
________ char. tional tot and t. On the other hand, at late stages of irra-
diation the size of the region with a perturbed flow grows
T a— s o 200 approximately proportional t6*2 This means that at— o

the following relations should hold asymptotically

_ -1
FIG. 3. The same as in Fig. 1, but for sound velocity profiles. V=Vas=pg "V(), (30
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FIG. 5. The density profiles at large irradiation times as func-

tions of £=x(\t3) "2 The dotted vertical lines show positions of
the C.. characteristic$23).

v=0a= 1O (£), (32)
P=Pa= (7= 1)poAtP(£), (32

where scaled dimensionless quantitiés,P depends onx
andt only via the self-similar variable

E=x/ \/ﬁ

By substituting asymptotic expressiofi30)—(32) into the
equations of fluid dynamic&€)—(11) one can obtain the set
of ordinary differential equations fov, v, andP (see Ap-

(33

pendiX. Apparently, these equations cannot be solved ana

lytically. It is possible, however, to find the limiting behavior
of flow directly from the numerical solution of Eq&®)—(11)
at larget.

Figure 5 represents density as function ffat several
fixed timest. One can see that in agreement with B20), at
larget the density depends onandt only via . The shock
wave does not disappear &s>«. At late stages its front
accelerates in accordance with the relation

Xg(t) = gsh\/ﬁg,

where &g, is a constant fully determining the asymptotic
properties of the shock wave. In particulad,, defines
asymptotic behavior of the shock front velocity,

(34)

3
sz—ggwﬁ (35

As seen in Figs. 5 and 6, the region of the perturbeoh-
trivial) flow corresponds to the intervél < é< &,. It will be

shown below that the asymptotic position of the shock front -

&= &g, moves to the left with rising initial pressure ratio
For weak initial shocksy=1, the shock front becomes close
to the limiting position of theC characteristics, i.e.&q~

— &o-
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FIG. 6. The same as in Fig. 5, but for the scaled velocity pro-
files.

Another feature of the self-similar regime, is the appear-
ance of a rapid density variation at some intermedigte
behind the shock front. By analyzing Eq#1)—(A3) (see
Appendix one can show that at largehe disturbed zone is
characterized by the combination of a strong discontinuity
(the shock front at=£) and two weak discontinuiti€9]
até=¢, and¢,. According to Fig. 6 the convergence to the
self-similar behavior is much slower for the velocity profiles.
It is interesting to note that the flow velocity changes sign at
late stages of irradiation. Comparing Figs. 5 and 6, one can
see that the poinf= ¢, corresponds to the minimum of the

asymptotic velocity profile[;(g). This point also gives the
limiting position of theC, characteristics at— . Indeed,
substituting Eq(31) into Eq. (16), one can see that al,

characteristics satisfy the asymptotic relatioxbo(t)
= ¢, N3, whereé, is determined from the equatiga0]

- 3
U(f*)zif*. (36)
Figures 7—9 show asymptotic profiles of flow velocity,
density, and pressure calculated for initial ratios 2, 4, and
10. In accordance with the above discussion, the lig& 3
goes through minima of the asymptotic velocity profiles at
different y. This is clearly seen in Fig. 7. Asymptotic density
profiles are shown in Fig. 8. Here the poirts are marked
by arrows. Figure 9 shows the asymptotic pressure profiles
that, unlike the density profiles, vary smoothly&t &, .
Jumps of asymptotic parameters at the shock frént
=¢., can be determined by using Eq25) in the limit t

—o. At é<E&g, one hasv=0 and P=V=1. Marking the
flow parameters af= &,,+0 by indices “sh,” one gets the

relations
3
g Usi g Po—1 3 1+ Py,
—Sém——=——=\/(y"D——=—=5é\/ —=—
2 Ven 1-Vg, 2 1+ Vg,

(37)

066305-5



J. A. MARUHN, I. N. MISHUSTIN, AND L. M. SATAROV

0.1

0.0

<>

FIG. 7. Asymptotic profiles of scaled velocity at various ratios
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FIG. 9. Asymptotic profiles of pressure at varigusThe dotted

of initial pressurey. The thin dashed curve corresponds to the linelines are the same as in Fig. 5.

3&/2. The dots indicate points of minimal velocities. Dotted lines

are the same as in Fig. 5.

Using these conditions,g,, Psy, andVg, may be obtained as

IV. SIMULATION OF IRRADIATED SHOCKS UNDER
LABORATORY CONDITIONS

functions ofég,. For example, the scaled pressure behind the Experimental investigation of the effects studied in this
shock front is equal to

Psh: 1+

Substituting in Eq.(37) the values ofég, determined from
numerical solution of fluid-dynamical equations, one may
calculate asymptotic parameters of the shock wave at give
x. The results of this calculation are shown in Table I. It ha

2y (&,
v+1 5(2) '

(39)

paper will be possible in the laboratory by depositing energy
into a target with a long deposition length. The only practical
means for doing this is the use of heavy-ion beams. We have,
therefore, performed realistic hydrodynamic simulations to
estimate the magnitude of the effect with heavy-ion beams
such as will be available with the proposed enhanced accel-
erator{ 11] at the GSI laboratory, Germany. In all calculations
resented in this section we consider cylindrical targets made
f solid gold. The targets were irradiated by singly ionized

Suranium beams collinear with target axes. In all cases the

been .checked_ that these resultg agree well with jumps of ﬂo‘%ombarding energy of heavy ions was 500 MeV per nucleon.
velocity, density, and pressure in Figs. 7—9. The last column 1o simulations were performed using the caui@EAT

gives the points where asymptotic velocities achieve theiﬂeveloped at Los AlamokL2]. The code solves the fluid-

minima.

35

30

25

20 -

PP

15

1.0 -/

0.5

-
-

-
-—

-1.0

FIG. 8. Asymptotic density profiles at varioys The arrows
indicate the values df, , defined by Eq(36). The dotted lines are

the same as in Fig. 5.

1.0

dynamical equations using thé\rbitrary Lagrangian-
Eulerian (ALE) technique and the second-order Godunov-
type scheme. Local values of ion energy deposition were
calculated by decomposing the beam into a large number of
beamlets and tracing them through the moving cells. Effects
of thermal conductivity and viscosity were neglected.

In the first simulation the target had 3 mm radius and 6
mm length. It was assumed that the beam had constant radial
and temporal profiles with the beam radiys=2 mm and
the pulse duratiomr=50 ns. The total penetration range of a
500 MeV/A uranium ion in solid gold of normal density is
about 3.5 mm. The total deposited energy of the beam was

TABLE I. Parameters of asymptotic flow behind the shock wave
(y=5/3).

X ésh Vghl l’}sh Issh ‘f*
2 —0.720 1.038 —0.040 1.062 —0.074
4 —0.759 1120 -0.122 1208 —-0.144
10 —0.785 1176 —-0.175 1310 —-0.209
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FIG. 11. Density plots of a gold cylinder irradiated by a heavy-
ion beam from the right. The darkness of shading is proportional to

FIG. 10. Profiles of density along the axis of a cylindrical solid t_he d_ensity of matter. Upper and !ower plots correspond to ‘”adi?"'
gold target irradiated by a heavy-ion beam of 50 ns duration fromtlon times 6 and 12 ns, respegtlvely. The gurved shock front is
the right at various timegthe parameters of the beam are given in clearly developed after 6 ns, but is dgstroyed in the center already at
the tex). The curves for times marked with an asterisk correspond12 ns. The effec_ts Qf beam penetration through t_he §hock fr_ont are
to the situation with an additional beam of the same propertie Iso V|_S|ble at this time. Note that the gray scale is different in two
impinging on the target from the left after the first beam has endedplms’ itwas chosen to show geometrical effects more clearly.

z(mm)

38.1 kJ. In the considered case the specific deposition ratef energy is clearly visible already &&100 ns. The shock

\(X) can be evaluated as moves faster and the density of matter behind its front di-
minishes in accordance with the predictions of the simplified
dE model studied in Sec. Ill. At=200 ns the density jump is
N(X)= —. (39 reduced by about 30—-50%. The shock speed has increased

by about 20%, which should be clearly observable in experi-
ments. The additional structure in the compressed region is
HeredE/dx is the energy loss per unit path length of a singleapparently caused by the nonuniform deposition of the beam.
ion in a target material of the densipy N is the total number Another possible scenario may exist even for a single
of bombarding ions. The ion deposition profilgg/dx have  beam irradiation. In the case when the beam has long enough
been calculated by using a realistic deposition model realizeduration, the sideward expansion of the target material will
in the TRIM code[13]. The equation of state for gold was result in depletion of density and, therefore, in a longer range
taken from thesesaME [14] tables. In fact, we solved the of bombarding particles near the target axis. This enhanced
fluid-dynamical equations analogous to E@8)—(5), but  range can lead to beam penetrating through the shock wave
generalized for the case of two-dimensiofelially symmet-  created at the initial stages of target irradiation. As a conse-
ric) cylindrical flow. guence, at late stages the shock wave will be weaker in a
Two situations were compared in our simulations. First,central region of the target. An example of such configura-
we consider irradiation with one beam from the right, and thetion is shown in Fig. 11. In this case the target had a radius of
same with a second beam of identical properties from the lef2 mm and a length of 5 mm. The beam had the same prop-
starting with a 50 ns delay, i.e., exactly after the end of theerties as above, except that its radial profile was assumed to
first beam. The target length is chosen such that the secorzé Gaussian with a full width at half maximum of 1.5 mm.
beam completely penetrates the running shock wave, anthe Gaussian profile was chosen not only because it is more
although the realistic deposition profile is used, the secondealistic, but also because in this case the density starts de-
Bragg peak is sufficiently far to the right of the shock. As acreasing immediately after beginning of irradiation even near
consequence, the local deposition from the second beam ike axis of the target. The results of calculation demonstrate
approximately constant inside the shock. Figure 10 compardsow the original curved shock front created by the beam is
density profiles along the target axis<0) for the two cases destroyed in the center, leading to a ringlike structure. This
at several times between 50 and 200 ns.tAt0 ns the effect can be observed after the shock wave emerges from
density profile is, of course, not yet disturbed by the secondhe other end of the target.
beam. One can clearly see that the shock without irradiation To check whether the effect might be observable with
runs towards the left, losing speed and amplitude ratheheavy-ion beams that will be available at the first stgigg
slowly att between 50 and 200 ns. A weaker shock causedf the upgraded GSI facility we have performed two addi-
by the backward side of the Bragg peak is not visible sincdional calculations for smaller beam intensities. In the first
its position is to the right of the region plotted in Fig. 10. The calculation both beaméhe first one generating the shock
decay in the shock strength due to the additional depositioand the second beam irradiating liad equal total energies,
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reduced by factor 5 as compared to previous cases. We chose o3\

the beam durationr=300 ns and radius,=5 mm. The (v—ig)V'Zv'V. (A1)
target had 3 mm radius and 6 mm length. In the second

calculation the beam generating the shock wave was replaced 3 -

by a stronger beam with parameters considered in the first ~ ~, a0 U

series of simulationgsee Fig. 10 and Ref5]). In both cal- (v_ Eg)v Fy=DPV="3, (A2)
culations the modifications of shock velocities and compres-

sion ratios turned out to be at the percentage scale that is 3
below the measurable level. Therefore, experimental investi- ({)_ =&
gation of the effects predicted in this paper requires intensive 2
heavy-ion beams that will be available only at the fully up-

graded GSI facility. where primes denote derivatives with respecté&oThe
boundary conditions for these equations may be derived
from EQs.(17)—(19). At t— o, using Eqs(30)—(32) one has

N - .1
P’-I—(yv’+1)P=§, (A3)

V. SUMMARY AND OUTLOOK

In this paper we have investigated the behavior of a shock v(*+0)=0, (A4)
wave stimulated by energy deposition. The case of a planar
shock wave under the influence of homogeneous irradiation
has been studied in detail. This was done by solving the
one-dimensional fluid-dynamical equations. It is shown that ) R
the initial shock discontinuity decays into accelerated shock P(+0)=V Y +%)=pylpo. (AB)
wave and a simple wave propagating into the postshock mat-
ter. It is found that the flow exhibits a self-similar behavior at The above equations are trivially satisfied in the regigns
late times. >¢&, and ¢<&g,. Therefore, it is sufficient to solve Egs.

The fluid-dynamical simulations have also been per{A1)—(A3) only in the interval &g, &). The boundary con-
formed for the more realistic conditions expected for laboraditions até= ¢, are given by Eqs(A4) and (A6) with the
tory experiments. We have studied the behavior of a ShOCkepIacemenH— o — £&,. The parameters of asymptotic flow at
wave under the influence of additional energy depositiorg=¢,+0 can be determined from E¢87). They are func-
produced by a heavy-ion beam in a cylindrical target andions of the shock wave positiofy,.
found that the main features of the above planar solution are One can rewrite EqgA1)—(A3) in the vector form
also reproduced in this more realistic situation. Another in-
teresting effect studied is the weakening of the shock wave in A§/’ B (A7)
the vicinity of the target axis due to the sideward expansion '

of matter and the increased deposition length of bombarding N . " n A )
ions. These examples represent possible experimental settiﬁgerey is & column with the component§u, P. The matrix

for studying the effects of energy deposition on the structuré" @nd the vectoB may be easily obtained from the above set
of shock waves. Such experiments are possible at any lab@f equations. The derivatives and the matrixA~* do not
ratory having intensive heavy-ion beams with high enougtexist at the pointg where
deposition energies.

In the future we are planning to study analogous pro- ~ 3
cesses in the case of spherical geometry and nonuniform detA=(v—§§)
density distributions that is more relevant for supernovae ex-

plosions. A more quantitative study of stimulated shock dy- ore o %goﬁ is the scaled sound velocity. Comparing

namics should include effects of internal heat transport andg:is equation with Eqs14)—(16) one can see that solutions

viscosity. It is interesting also to investigate the role playe . ) i,
by endothermic and exothermic reactions during the propa(-)f Eq. (AB.) give the asymptotic positions of e, andC,q
gation of a shock front, characteristics. The latter is defined by E86).

In fact, the right boundary of the nontrivial regios,
=¢,, is theC, characteristic. At this poiné’ jumps from
zero(at £>¢;) to some finite valuavzfﬂ(go—O). By us-

This work has been supported by the RFBR Grant Noing Egs.(A1)—(A3) for small &,— &, one can show that their
00-15-96590, GSI, BMBF, and WTZ. solution between the characteristi€s andC,, i.e., in the
interval (¢, ,&p), is a functional of the parametees, and
p2ol po- At given a, one can solve EqgA1l)—(A3) in the

P(—o)=V(—®)=1, (A5)

-0. (A8)

.~ 3\%2 .
v—if) —C2
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APPENDIX: EQUATIONS FOR ASYMPTOTIC

FLOW PROFEILES \;vchr?r!(ta“i?rt?rval. Below this solution is marked by the sub-
Inserting expression$30)—(32) into Egs. (9)—(11) one On the other hand, choosing some valuggfand calcu-
obtains the coupled set of ordinary differential equations folating y( £+ 0), one can find the solution of Eq#1)—(A3)
asymptotic profiles/(£), v (&), andP(&) between the shock front and tl® characteristic, i.e., in the
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interval (ésn,€,)- _The cor_responding sqlutiofdenoted be- ﬁ_(g*):f:Jr(g*). (A10)
low by the subscript ") is fully determined by the param- ) )
eter &,. Matching the solution;f;ur and 9_ at é=¢, gives By using Egs(A9) and(A10) and Eqs(A1)—~(A3) it may be
three conditions for determining three unknown parameter§hown thatv will be also continuous a§=¢, .
& &, . anda A “shooting” method may then be used to fingl, and

asymptotic flow profileg/(¢) at different pressure ratiog.

D (E)=0(E)= gf* ’ (A9) 'Sl'zistla”clzsalculations agree well with the results obtained in
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[4] L.D. Landau and E.M. LifshitzFluid Mechanics(Pergamon, Book, J.P. Boris, and K. Hainbid. 18, 248 (1975.
New York, 1987. [9] In such discontinuities spatial derivatives of fluid-dynamical
[5] It is, of course, irrelevant how the shock itself is created— variables are infinite or exhibit jumps.

instead of a heavy-ion beam a laser could be used, for ext10] According to Eq.(Al), v is minimal até=¢, .
ample, and the second beam could come from any suitablgll] For the ongoing discussion about this project see http://

direction. www.gsi.de/GSI-Future/

[6] J.A. Maruhn, K.-J. Lutz, F. lllenberger, and S. Bernard, Nucl.[12] F.L. Addessioet al, LANL Report No. LA-10613-MS, 1992
Instrum. Methods Phys. Res. A15 98 (1998; N.A. Tahir, (unpublishegl
D.H.H. Hoffmann, J.A. Maruhn, K.-J. Lutz, and R. Bock, [13] J.F. Ziegler and J.P. Biersackhe Stopping and Range of lons
Phys. Plasmas, 4426(1998. in Solids(Pergamon, New York, 1985

[7] It is worth noting that the last equality in E@®5) is in fact the  [14] LANL Report No. LA-UR-92-3407, edited by S.P. Lyon and
Rankine-Hugoniot relation. Excluding from the first two re- J.D. Johnson, 199@npublished
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