
PHYSICAL REVIEW E, VOLUME 64, 066305
Influence of irradiation on the space-time structure of shock waves
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The long-range energy deposition by heavy-ion beams makes new shock wave experiments possible in the
laboratory. We have investigated a situation that is of relevance to supernova dynamics in astrophysics, where
a shock wave is irradiated by a flux of neutrinos depositing energy throughout the shock wave and surrounding
matter, thus changing the behavior of the running shock. We have carried out fluid-dynamical simulations to
study generic features of stimulated shock waves. First we consider an idealized case assuming uniform energy
deposition into a planar shock wave propagating through an ideal gas. Then we investigate more realistic
situations realizable in laboratory experiments with heavy-ion beams. We have found that energy deposition
leads to two important effects: acceleration of the shock front and decay of the shock strength. The possibility
of laboratory experiments is briefly discussed.
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I. INTRODUCTION

Supernova explosions represent one of the most spec
lar phenomena in our Universe. In recent years much ef
has been devoted to developing realistic theoretical mo
of this complex process~see the recent review@1#!. The main
mechanism includes the shock wave generation upon
bounce of the infalling iron core of a massive star, but d
tailed calculations showed that the prompt bounce sh
mechanism does not lead directly to ejection of the ste
envelope. Due to severe energy losses due to, e.g., phot
integration of iron nuclei, the outward shock wave stops
side the iron core. Recently several new mechanisms of
shock revival have been suggested@2,3# that include neutrino
heating and convection in the postshock matter. These
cesses raise the postshock pressure and provide addit
energy for the shock wave expansion. The calculations
formed by various groups differ, however, in conclusio
concerning the possibility of successful shocks. In this rat
unclear situation a better understanding of the stimula
shock dynamics is highly desirable@3#. Fortunately, intense
heavy-ion beams open a new possibility to study such p
cesses in laboratory experiments.

In the first part of this paper we formulate a simple mod
to study the evolution of a planar shock wave under infl
ence of homogeneous irradiation. We have performed
tailed fluid-dynamical calculations for the ideal gas equat
of state. The matter flow behind the shock front is rath
complicated, resembling a decay of an initial discontinu
@4#. The calculations show that under irradiation the sho
front accelerates, but the density jump at this front dim
ishes. It is remarkable that a self-similar regime of hydrod
namic flow is established at large irradiation time.

In the second part of the paper we generalize our mode
consider more realistic situations that may be easily rep
duced in laboratory conditions. Namely, we consider the c
when the initial shock wave is created by a beam with fin
extension in the transverse directions. Specifically, we st
the scenario in which the first beam creates a shock wav
1063-651X/2001/64~6!/066305~9!/$20.00 64 0663
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a cylindrical target and then, when it has developed su
ciently, the target is irradiated by a second beam. The ta
length is chosen in such a way that the shock generated a
initial stage is completely within the deposition region of t
second beam@5#. In our simulations we assume that both a
heavy-ion beams with equal properties and are direc
along the target axis from opposite directions. General pr
erties of hydrodynamical flow in such targets have been s
ied earlier in Ref.@6#. Another interesting phenomenon
predicted for the case of a single beam irradiation with c
stant temporal profile. It is shown that with increasing irr
diation time, when radial flow of matter behind the sho
front becomes noticeable, the shock wave in its central p
decays as compared to initial stages. The origin of this p
nomenon consists in the increased range of the bombar
particles at later stages of target irradiation.

The paper is organized as follows. In Sec. II a simp
fluid-dynamical model is formulated for the case of homog
neous energy deposition. Then in Sec. III this model is u
to study the dynamics of a planar shock wave in matter w
an ideal gas equation of state. The asymptotic regime of
matter flow is considered by a semi-analytic method outlin
in the Appendix. The results of more realistic calculatio
and suggestions for future experiments with heavy-
beams are given in Sec. IV. The main results of the pres
paper are summarized in Sec. V.

II. EQUATIONS OF FLUID DYNAMICS

Let us consider a beam of energetic particles irradiatin
target with the mass densityr. Often we shall speak abou
photon irradiation, but the same approach can be applied
other penetrating particles, e.g., for neutrino beams. T
strength of irradiation is characterized by the energy dep
ited per unit space-time volume in the local rest frame of
target,

dE

dt d3r
5lr, ~1!
©2001 The American Physical Society05-1
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wherel is the specific deposition rate. Let the target cons
of atoms of different speciesi with particle number densitie
ni . In the case of monochromatic photons with the ene
flux I (v) one has

lr5I ~v!(
i

ni^s i
abs~v!&, ~2!

where\v is the photon energy,^s i
abs& is the cross section o

photon absorption on atoms of thei th kind. The angular
brackets denote averaging over their momentum distribut
In this paper we neglect internal heat transport processes
assumel to be constant in time and space. The last assu
tion implies that the external radiation is homogeneous, D
pler effects are not important, and the photon absorp
length, (( ini^s i

abs&)21, is large as compared to the chara
teristic size of a target.

Below it is assumed that energy deposition proceeds
der condition of local thermodynamic equilibrium, in pa
ticular, we neglect effects of internal heat transport and v
cosity. The dynamics of target flow is described by t
equations of ideal hydrodynamics in nonrelativistic appro
mation. Let us consider first a one-dimensional case w
matter moves along thex axis with the velocityv[vx . The
equations of motion then take the form

] tr1]x~rv !50, ~3!

] t~rv !1]x~P1rv2!50, ~4!

] t~e1rv2/2!1]x@v~e1P1rv2/2!#5lr. ~5!

HereP is pressure ande is the energy density. By using Eq
~3! and~4! and thermodynamic relations one may rewrite E
~5! in the equivalent form

T~] t1v]x!sm5l, ~6!

whereT is temperature andsm is the specific entropy. This
equation shows thatl is, in fact, the specific rate of hea
deposition into the target matter.

In the following we assume that the target matter can
regarded as an ideal Boltzmann gas with one species of
ecules and a constant ratio of heat capacitiesg5Cp /Cv . The
equation of state of such matter has a very simple form

P5~g21!e5rRT/M , ~7!

whereR is the gas constant andM is the molar mass. The
specific entropy in this case is

sm5
R

~g21!M
ln

P

rg
1const. ~8!

Using Eq. ~7! and introducing the specific volumeV
51/r one can rewrite Eqs.~3!–~5! as follows

~] t1v]x!V5V]xv, ~9!

~] t1v]x!v52V]xP, ~10!
06630
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V~] t1v]x!P1gP~] t1v]x!V5~g21!l. ~11!

It is convenient to introduce instead ofP,V,v new dimen-
sionless quantitiesP̄5P/P0 , V̄5r0V, v̄5v/v0 where P0
andr0 are initial pressure and density, and

v05AP0 /r0. ~12!

Let us make the transition fromt,x to dimensionless vari-
ables t̄ 5t/t0 and x̄5x/x0, where

t05v0
2/l, x05v0t0 . ~13!

Now Eqs.~9!–~11! may be rewritten in the same form, bu
with the replacementsP,V,v,t,x→ P̄,V̄,v̄, t̄ ,x̄ andl→1. If
the initial conditions do not impose additional scales, there
no need to solve fluid-dynamical equations for differe
deposition ratesl. It is sufficient to find the solution only for
one fixed value ofl, then the above scaling can be used
obtain the solution for other values. For example, this sca
can be applied for the shock wave initial conditions~see the
next section!.

We close the general discussion by defining three fami
of characteristicsxC1

,xC2
,xC0

. They are solutions of the fol-
lowing differential equations

ẋ~ t !5v1cs ~C1!, ~14!

ẋ~ t !5v2cs ~C2!, ~15!

ẋ~ t !5v ~C0!, ~16!

where v and cs are taken atx5x(t). As well known @4#,
these characteristics describe propagation of small dis
bances of fluid-dynamical quantities. In particular, the e
tropy disturbances propagate along theC0 characteristics
~the latter are also the collective flow trajectories!.

In the following we assume that irradiation starts att50
and the initial profilesr(x,0), v(x,0) andP(x,0) are known
function of x. Let us consider first the case of homogeneo
initial conditions, when r(x,0)5r0 , v(x,0)5v0, and
P(x,0)5P0. In this case the solution of Eqs.~9!–~11! is
trivial

V~x,t !51/r0 , ~17!

v~x,t !5v0 , ~18!

P~x,t !5P01~g21!r0lt. ~19!

In the same case the adiabatic sound velocity is equal to

cs5AgPV5Ac0
21g~g21!lt, ~20!

wherec05AgP0 /r0 is the initial sound velocity.
For homogeneous initial conditions, substituting Eqs.~18!

and ~20! into Eqs. ~14!–~16!, one can find characteristic
analytically
5-2
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xC6
~ t !5v0t6

2

3g~g21!l
@c0

21g~g21!lt#3/21const,

~21!

xC0
~ t !5v0t1const. ~22!

According to Eq.~21!, at large irradiation times theC6 char-
acteristics approach asymptotically the same lines that do
depend on initial conditions

xC6
~ t !.6j0Alt3 ~ t@c0

2/l,v0
2/l!, ~23!

where

j05
2

3
Ag~g21!. ~24!

III. ONE-DIMENSIONAL SHOCK WAVES

A. Numerical results

Let us consider a one-dimensional shock wave propa
ing to the left along thex axis ~directed to the right! and
denote the position of its front byxsh(t). For brevity we
introduce the vectory5(V,v,P) that combines the set o
fluid-dynamic quantities in a compact way. It is assumed t
at x5xsh this vector jumps fromy1[y(xsh20,t) to y2
[y(xsh10,t). In the rest frame of the shock wave~moving
with the velocity D5uẋshu with respect to the laborator
frame! the fluxes of mass, energy, and momentum should
continuous atx5xsh. This gives three relations@4# connect-
ing D and the components of vectorsy1,2. In the case of an
ideal gas one obtains@7#

v11D

V1
5

v21D

V2
5AP22P1

V12V2
5Ag~P11P2!

V11V2
, ~25!

wherev1,2 are defined in the laboratory frame. Therefore,
given y1, all characteristics of the shock wave can be de
mined if one of the quantitiesD,P2 ,V2 ,v2 is known. One
should bear in mind that the relations~25! are based only on
the local conservation laws and hold also for shock wa
with energy deposition. However, as will be shown below,
this situation the characteristics of the shock wave~in par-
ticular, D) are in general time dependent.

It is further assumed that a steplike one-dimensio
shock wave was created in a target att,0. If pressure and
density before and behind the shock front do not change w
x and t , the shock velocityD will be constant. Below we
study the dynamics of this ‘‘initial’’ shock wave after switch
ing on the energy deposition att50. Equations~9!–~11! are
solved numerically by using the flux corrected transp
~FCT! algorithm @8#. The calculations are performed in th
rest frame of the initial shock. Choosing the origin of thex
axis at the position of the shock front, one hasxsh(t)50 at
t,0. To be more specific, the following initial conditions a
applied

y~x,0!5y10Q~2x!1y20Q~x!, ~26!
06630
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whereQ(x)[ 1
2 (11sgnx), andy10 andy20 denote the fluid-

dynamical quantities in front and behind of the initial sho
front, respectively. We choose these quantities by fixing
density (r0[r1051/V10) and pressure (P0[P10) at x,0 as
well as the pressure (P20) at x.0.

Using the relations~25! one has

V205
~g21!x1g11

~g11!x1g21
V10, ~27!

v105v20

V10

V20
5D~0!5v0A~g11!x1g21

2
, ~28!

wherex5P20/P10 is the initial pressure ratio,v0 is defined
by Eq. ~12!, and the velocitiesv i0 ( i 51,2) are taken in the
rest frame of the shock front.

Most calculations have been performed forg55/3 and
x54. In this case the initial density jumps at the shock fro
from r0 to 2.125r0 and the flow velocity jumps fromv10
.2.380v0 to v20.1.120v0. Some results of numerical ca
culations for these initial conditions are shown in Figs. 1–
The results are presented using the scaled variablest/t0 and
x/x0, with t0 ,x0 defined in Eq.~13!. As explained in the
preceding section, in such a representation the wholel de-
pendence is contained only in the scalest0 andx0.

Figure 1 shows the density profiles at different times fro
the beginning of irradiation. One can see that irradiation
forms the shape of the initial shock wave att.0. The region
of the perturbed flow is wider at later times. With increasi
t the shock wave becomes weaker~the density jump at the
left hand side diminishes!. However, the absolute value o
the shock front velocity becomes larger as compared to
initial value D(0).

The acceleration of the shock front is clearly visible
Fig. 1. Indeed, the shift of the shock front position from t
point x50 increases nonlinearly witht. The reason for ac-

FIG. 1. Density profiles for different times of shock wave irr
diation. The initial pressure ratiox54. Scalesx0 and t0 are given
by Eqs.~12! and ~13!. The dotted curve shows densities on theC0

characteristic withx(0)50.
5-3
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celeration is rather simple: as follows from Eq.~20! and
Fig. 3 the sound velocitycs behind the shock front increase
with t due to the heat deposition.

At given t the density profile has three characteris
points:~1! the shock wave discontinuity atx5xsh(t), ~2! the
intermediate kink where the derivative]xr jumps, and~3!
the boundary of the perturbed region on the right-hand s
The position of the third point can be found analytically. It
in fact the characteristicxC1

(t) with the initial condition

xC1
(0)50. The calculation confirms that this point moves

accordance with Eq.~21! where v05v20 and c05c20

5AgP20V20. It can be shown that the second point cor
sponds to the characteristicxC0

(t) with xC0
(0)50. The di-

rect numerical integration of Eq.~16! gives the result shown
by the dotted curve in Fig. 1. One can see that on thex-r
plane theC0 characteristic indeed goes through the kink p
sitions following from Eqs.~9!–~11!.

Profiles of pressure calculated for the same initial con
tions are shown in Fig. 2. One can see that the pressure j

FIG. 2. The same as in Fig. 1, but for pressure profiles.

FIG. 3. The same as in Fig. 1, but for sound velocity profiles
06630
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at the shock front,P22P1, becomes larger at later stages
irradiation. We have checked that the density and press
jumps atx5xsh satisfy the Hugoniot adiabate given by E
~25!. In accordance with Eq.~19!, pressure increases linear
with t at x→6`. At known r andP the sound velocitycs
can be calculated by using the first equality in Eq.~20!. In
the case of the ideal gascs is proportional toAT. The results
of the calculation are shown in Fig. 3. It is seen that the ju
in cs , and therefore also inT, practically does not increas
with t. At large t the asymptotic values ofcs at x→6`
become nearly equal. This agrees with Eq.~20!. Indeed, at
t@c20

2 /l one obtains the relations

lim
x→6`

cs.
3

2
j0Alt, ~29!

wherej0 is defined by Eq.~24!.
Figure 4 shows the results for the flow velocity profile

Similar to density, values ofv do not change witht at x→
6`. However, the flow velocities in the perturbed regio
diminish as compared to initial values. As will be shown
the next section these velocities become negative at
stages of irradiation. Numerical values of the velocity jum
agree with conditions given in Eq.~25! ~see Ref.@7#!. At
larget this jump increases approximately proportional toAt.

B. Self-similarity of flow at large irradiation time

The results presented in Sec. III A suggest that at la
irradiation time, the fluid dynamical quantities exhibit som
properties of self-similarity. Att@c20

2 /l characteristic values
of pressure and sound velocity increase, respectively, pro
tional to t andAt. On the other hand, at late stages of irr
diation the size of the region with a perturbed flow grow
approximately proportional tot3/2. This means that att→`
the following relations should hold asymptotically

V.Vas5r0
21V̂~j!, ~30!

FIG. 4. The same as in Fig. 1, but for flow velocity profiles.
5-4
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v.vas5Alt v̂~j!, ~31!

P.Pas5~g21!r0lt P̂~j!, ~32!

where scaled dimensionless quantitiesV̂,v̂,P̂ depends onx
and t only via the self-similar variable

j[x/Alt3. ~33!

By substituting asymptotic expressions~30!–~32! into the
equations of fluid dynamics~9!–~11! one can obtain the se
of ordinary differential equations forV̂, v̂, and P̂ ~see Ap-
pendix!. Apparently, these equations cannot be solved a
lytically. It is possible, however, to find the limiting behavio
of flow directly from the numerical solution of Eqs.~9!–~11!
at larget.

Figure 5 represents density as function ofj at several
fixed timest. One can see that in agreement with Eq.~30!, at
large t the density depends onx and t only via j. The shock
wave does not disappear ast→`. At late stages its front
accelerates in accordance with the relation

xsh~ t !.jshAlt3, ~34!

where jsh is a constant fully determining the asymptot
properties of the shock wave. In particular,jsh defines
asymptotic behavior of the shock front velocity,

D~ t !.2
3

2
jshAlt. ~35!

As seen in Figs. 5 and 6, the region of the perturbed~non-
trivial! flow corresponds to the intervaljsh,j,j0. It will be
shown below that the asymptotic position of the shock fr
j5jsh moves to the left with rising initial pressure ratiox.
For weak initial shocks,x.1, the shock front becomes clos
to the limiting position of theC characteristics, i.e.,jsh.
2j0.

FIG. 5. The density profiles at large irradiation times as fu
tions of j5x(lt3)21/2. The dotted vertical lines show positions o
the C6 characteristics~23!.
06630
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Another feature of the self-similar regime, is the appe
ance of a rapid density variation at some intermediatej*
behind the shock front. By analyzing Eqs.~A1!–~A3! ~see
Appendix! one can show that at larget the disturbed zone is
characterized by the combination of a strong discontinu
~the shock front atj5jsh) and two weak discontinuities@9#
at j5j* andj0. According to Fig. 6 the convergence to th
self-similar behavior is much slower for the velocity profile
It is interesting to note that the flow velocity changes sign
late stages of irradiation. Comparing Figs. 5 and 6, one
see that the pointj5j* corresponds to the minimum of th
asymptotic velocity profilev̂(j). This point also gives the
limiting position of theC0 characteristics att→`. Indeed,
substituting Eq.~31! into Eq. ~16!, one can see that allC0
characteristics satisfy the asymptotic relationxC0

(t)

.j*
Alt3, wherej* is determined from the equation@10#

v̂~j* !5
3

2
j* . ~36!

Figures 7–9 show asymptotic profiles of flow velocit
density, and pressure calculated for initial ratiosx52, 4, and
10. In accordance with the above discussion, the line 3j/2
goes through minima of the asymptotic velocity profiles
differentx. This is clearly seen in Fig. 7. Asymptotic densi
profiles are shown in Fig. 8. Here the pointsj* are marked
by arrows. Figure 9 shows the asymptotic pressure profi
that, unlike the density profiles, vary smoothly atj5j* .

Jumps of asymptotic parameters at the shock fronj
5jsh can be determined by using Eqs.~25! in the limit t

→`. At j,jsh one hasv̂50 and P̂5V̂51. Marking the
flow parameters atj5jsh10 by indices ‘‘sh,’’ one gets the
relations

2
3

2
jsh5

v̂sh2
3

2
jsh

V̂sh

5A~g21!
P̂sh21

12V̂sh

5
3

2
j0A11 P̂sh

11V̂sh

.

~37!

- FIG. 6. The same as in Fig. 5, but for the scaled velocity p
files.
5-5
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Using these conditions,v̂sh, P̂sh, andV̂sh may be obtained as
functions ofjsh. For example, the scaled pressure behind
shock front is equal to

P̂sh511
2g

g11 S jsh
2

j0
2

21D . ~38!

Substituting in Eq.~37! the values ofjsh determined from
numerical solution of fluid-dynamical equations, one m
calculate asymptotic parameters of the shock wave at g
x. The results of this calculation are shown in Table I. It h
been checked that these results agree well with jumps of
velocity, density, and pressure in Figs. 7–9. The last colu
gives the points where asymptotic velocities achieve th
minima.

FIG. 7. Asymptotic profiles of scaled velocity at various rati
of initial pressurex. The thin dashed curve corresponds to the l
3j/2. The dots indicate points of minimal velocities. Dotted lin
are the same as in Fig. 5.

FIG. 8. Asymptotic density profiles at variousx. The arrows
indicate the values ofj* , defined by Eq.~36!. The dotted lines are
the same as in Fig. 5.
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IV. SIMULATION OF IRRADIATED SHOCKS UNDER
LABORATORY CONDITIONS

Experimental investigation of the effects studied in th
paper will be possible in the laboratory by depositing ene
into a target with a long deposition length. The only practic
means for doing this is the use of heavy-ion beams. We h
therefore, performed realistic hydrodynamic simulations
estimate the magnitude of the effect with heavy-ion bea
such as will be available with the proposed enhanced ac
erator@11# at the GSI laboratory, Germany. In all calculatio
presented in this section we consider cylindrical targets m
of solid gold. The targets were irradiated by singly ioniz
uranium beams collinear with target axes. In all cases
bombarding energy of heavy ions was 500 MeV per nucle

The simulations were performed using the codeCAVEAT

developed at Los Alamos@12#. The code solves the fluid
dynamical equations using theArbitrary Lagrangian-
Eulerian ~ALE! technique and the second-order Goduno
type scheme. Local values of ion energy deposition w
calculated by decomposing the beam into a large numbe
beamlets and tracing them through the moving cells. Effe
of thermal conductivity and viscosity were neglected.

In the first simulation the target had 3 mm radius and
mm length. It was assumed that the beam had constant ra
and temporal profiles with the beam radiusr b52 mm and
the pulse durationt550 ns. The total penetration range of
500 MeV/A uranium ion in solid gold of normal density i
about 3.5 mm. The total deposited energy of the beam

FIG. 9. Asymptotic profiles of pressure at variousx. The dotted
lines are the same as in Fig. 5.

TABLE I. Parameters of asymptotic flow behind the shock wa
(g55/3).

x jsh V̂sh
21 v̂sh P̂sh

j*

2 20.720 1.038 20.040 1.062 20.074
4 20.759 1.120 20.122 1.208 20.144

10 20.785 1.176 20.175 1.310 20.209
5-6
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38.1 kJ. In the considered case the specific deposition
l(x) can be evaluated as

l~x!5
N

pr b
2t

dE

r dx
. ~39!

HeredE/dx is the energy loss per unit path length of a sing
ion in a target material of the densityr, N is the total number
of bombarding ions. The ion deposition profilesdE/dx have
been calculated by using a realistic deposition model real
in the TRIM code @13#. The equation of state for gold wa
taken from theSESAME @14# tables. In fact, we solved th
fluid-dynamical equations analogous to Eqs.~3!–~5!, but
generalized for the case of two-dimensional~axially symmet-
ric! cylindrical flow.

Two situations were compared in our simulations. Fir
we consider irradiation with one beam from the right, and
same with a second beam of identical properties from the
starting with a 50 ns delay, i.e., exactly after the end of
first beam. The target length is chosen such that the sec
beam completely penetrates the running shock wave,
although the realistic deposition profile is used, the sec
Bragg peak is sufficiently far to the right of the shock. As
consequence, the local deposition from the second bea
approximately constant inside the shock. Figure 10 comp
density profiles along the target axis (r 50) for the two cases
at several times between 50 and 200 ns. Att550 ns the
density profile is, of course, not yet disturbed by the sec
beam. One can clearly see that the shock without irradia
runs towards the left, losing speed and amplitude rat
slowly at t between 50 and 200 ns. A weaker shock cau
by the backward side of the Bragg peak is not visible sin
its position is to the right of the region plotted in Fig. 10. T
decay in the shock strength due to the additional deposi

FIG. 10. Profiles of density along the axis of a cylindrical so
gold target irradiated by a heavy-ion beam of 50 ns duration fr
the right at various times~the parameters of the beam are given
the text!. The curves for times marked with an asterisk correspo
to the situation with an additional beam of the same proper
impinging on the target from the left after the first beam has end
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of energy is clearly visible already att5100 ns. The shock
moves faster and the density of matter behind its front
minishes in accordance with the predictions of the simplifi
model studied in Sec. III. Att5200 ns the density jump is
reduced by about 30–50 %. The shock speed has incre
by about 20%, which should be clearly observable in exp
ments. The additional structure in the compressed regio
apparently caused by the nonuniform deposition of the be

Another possible scenario may exist even for a sin
beam irradiation. In the case when the beam has long eno
duration, the sideward expansion of the target material w
result in depletion of density and, therefore, in a longer ran
of bombarding particles near the target axis. This enhan
range can lead to beam penetrating through the shock w
created at the initial stages of target irradiation. As a con
quence, at late stages the shock wave will be weaker
central region of the target. An example of such configu
tion is shown in Fig. 11. In this case the target had a radiu
2 mm and a length of 5 mm. The beam had the same p
erties as above, except that its radial profile was assume
be Gaussian with a full width at half maximum of 1.5 mm
The Gaussian profile was chosen not only because it is m
realistic, but also because in this case the density starts
creasing immediately after beginning of irradiation even n
the axis of the target. The results of calculation demonst
how the original curved shock front created by the beam
destroyed in the center, leading to a ringlike structure. T
effect can be observed after the shock wave emerges f
the other end of the target.

To check whether the effect might be observable w
heavy-ion beams that will be available at the first stage@11#
of the upgraded GSI facility we have performed two ad
tional calculations for smaller beam intensities. In the fi
calculation both beams~the first one generating the shoc
and the second beam irradiating it! had equal total energies

d
s
d.

FIG. 11. Density plots of a gold cylinder irradiated by a heav
ion beam from the right. The darkness of shading is proportiona
the density of matter. Upper and lower plots correspond to irrad
tion times 6 and 12 ns, respectively. The curved shock fron
clearly developed after 6 ns, but is destroyed in the center alread
12 ns. The effects of beam penetration through the shock front
also visible at this time. Note that the gray scale is different in t
plots, it was chosen to show geometrical effects more clearly.
5-7
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reduced by factor 5 as compared to previous cases. We c
the beam durationt5300 ns and radiusr b55 mm. The
target had 3 mm radius and 6 mm length. In the sec
calculation the beam generating the shock wave was repl
by a stronger beam with parameters considered in the
series of simulations~see Fig. 10 and Ref.@5#!. In both cal-
culations the modifications of shock velocities and compr
sion ratios turned out to be at the percentage scale th
below the measurable level. Therefore, experimental inve
gation of the effects predicted in this paper requires intens
heavy-ion beams that will be available only at the fully u
graded GSI facility.

V. SUMMARY AND OUTLOOK

In this paper we have investigated the behavior of a sh
wave stimulated by energy deposition. The case of a pla
shock wave under the influence of homogeneous irradia
has been studied in detail. This was done by solving
one-dimensional fluid-dynamical equations. It is shown t
the initial shock discontinuity decays into accelerated sh
wave and a simple wave propagating into the postshock m
ter. It is found that the flow exhibits a self-similar behavior
late times.

The fluid-dynamical simulations have also been p
formed for the more realistic conditions expected for labo
tory experiments. We have studied the behavior of a sh
wave under the influence of additional energy deposit
produced by a heavy-ion beam in a cylindrical target a
found that the main features of the above planar solution
also reproduced in this more realistic situation. Another
teresting effect studied is the weakening of the shock wav
the vicinity of the target axis due to the sideward expans
of matter and the increased deposition length of bombard
ions. These examples represent possible experimental s
for studying the effects of energy deposition on the struct
of shock waves. Such experiments are possible at any l
ratory having intensive heavy-ion beams with high enou
deposition energies.

In the future we are planning to study analogous p
cesses in the case of spherical geometry and nonunif
density distributions that is more relevant for supernovae
plosions. A more quantitative study of stimulated shock d
namics should include effects of internal heat transport
viscosity. It is interesting also to investigate the role play
by endothermic and exothermic reactions during the pro
gation of a shock front.
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APPENDIX: EQUATIONS FOR ASYMPTOTIC
FLOW PROFILES

Inserting expressions~30!–~32! into Eqs. ~9!–~11! one
obtains the coupled set of ordinary differential equations
asymptotic profilesV̂(j), v̂(j), and P̂(j)
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S v̂2
3

2
j D V̂85 v̂8V̂, ~A1!

S v̂2
3

2
j D v̂81~g21!P̂8V̂52

v̂
2

, ~A2!

S v̂2
3

2
j D P̂81~g v̂811!P̂5

1

V̂
, ~A3!

where primes denote derivatives with respect toj. The
boundary conditions for these equations may be deri
from Eqs.~17!–~19!. At t→`, using Eqs.~30!–~32! one has

v̂~6`!50, ~A4!

P̂~2`!5V̂~2`!51, ~A5!

P̂~1`!5V̂21~1`!5r20/r0 . ~A6!

The above equations are trivially satisfied in the regionj
.j0 and j,jsh. Therefore, it is sufficient to solve Eqs
~A1!–~A3! only in the interval (jsh,j0). The boundary con-
ditions atj5j0 are given by Eqs.~A4! and ~A6! with the
replacement1`→j0. The parameters of asymptotic flow a
j5jsh10 can be determined from Eq.~37!. They are func-
tions of the shock wave positionjsh.

One can rewrite Eqs.~A1!–~A3! in the vector form

Aŷ85B, ~A7!

whereŷ is a column with the componentsV̂,v̂,P̂. The matrix
A and the vectorB may be easily obtained from the above s
of equations. The derivativesŷ8 and the matrixA21 do not
exist at the pointsj where

detA5S v̂2
3

2
j D F S v̂2

3

2
j D 2

2 ĉ2G50. ~A8!

Here ĉ5 3
2 j0AP̂V̂ is the scaled sound velocity. Comparin

this equation with Eqs.~14!–~16! one can see that solution
of Eq. ~A8! give the asymptotic positions of theC6 andC0
characteristics. The latter is defined by Eq.~36!.

In fact, the right boundary of the nontrivial region,j

5j0, is theC1 characteristic. At this pointv̂8 jumps from
zero ~at j.j0) to some finite valueav[ v̂8(j020). By us-
ing Eqs.~A1!–~A3! for smallj02j, one can show that thei
solution between the characteristicsC1 and C0, i.e., in the
interval (j* ,j0), is a functional of the parametersav and
r20/r0. At given av one can solve Eqs.~A1!–~A3! in the
whole interval. Below this solution is marked by the su
script ‘‘1.’’

On the other hand, choosing some value ofjsh and calcu-
lating ŷ(jsh10), one can find the solution of Eqs.~A1!–~A3!
between the shock front and theC0 characteristic, i.e., in the
5-8



-

te

in

INFLUENCE OF IRRADIATION ON THE SPACE-TIME . . . PHYSICAL REVIEW E 64 066305
interval (jsh,j* ). The corresponding solution~denoted be-
low by the subscript ‘‘2 ’’ ! is fully determined by the param
eter jsh. Matching the solutionsŷ1 and ŷ2 at j5j* gives
three conditions for determining three unknown parame
jsh, j* , andav ,

v̂2~j* !5 v̂1~j* !5
3

2
j* , ~A9!
—
e

ab

cl

k,

06630
rs

P̂2~j* !5 P̂1~j* !. ~A10!

By using Eqs.~A9! and~A10! and Eqs.~A1!–~A3! it may be
shown thatV̂ will be also continuous atj5j* .

A ‘‘shooting’’ method may then be used to findjsh and
asymptotic flow profilesŷ(j) at different pressure ratiosx.
These calculations agree well with the results obtained
Sec. III B.
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